If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2-9m+5=0
a = 2; b = -9; c = +5;
Δ = b2-4ac
Δ = -92-4·2·5
Δ = 41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{41}}{2*2}=\frac{9-\sqrt{41}}{4} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{41}}{2*2}=\frac{9+\sqrt{41}}{4} $
| 15x^2-69x-30=0 | | x+5x+40=0 | | 2m^2+5m=0 | | 7+4x=28-2x | | 5m(5m+8)=16 | | (m-5)(m+5)=0 | | (9x-6)+(3x+9)-(9x-2)= | | 3(6x+1)=18x-3 | | x/2+7=x | | 6x+12=3(x)(x)(x) | | 3x^2-8x-72=0 | | Y=-5x^2-2x+10 | | 0.7/3=x/2 | | 2m/3-1/6=1m/2 | | 2x^2+2x-209=0 | | 2x^2-2x-209=0 | | x2+20x-69=(x+23)(x-3) | | 3(x+2)-1=-2x-20 | | d^2−4d−60=0 | | 8500(0.95)^t=400*t+2000 | | 3(x+2-1=-2x-20 | | 3^4x=243 | | 1/2(-6x+12)=9 | | (x+1)^2=19 | | 11x^2+15/11=8x | | 11x^+15/11=8x | | x^-2x-1=8 | | 5x/3+2x/5-5=3x/5-1 | | 9x+12-4x=2x+9 | | s/7+32=38 | | s/7+19=21 | | 10x+10=15x |